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Abstract: The field of computer vision, semantic segmentation is a fundamental problem that necessitates the precise 

assignment of semantic labels to each pixel in an image. Despite the fact that pixel-wise labelling has been considered the gold 

standard due to the fine-grained resolution it offers, it is extremely expensive in terms of the annotation and processing resources 

it requires. The patch-wise labeling approach has emerged as a potentially useful compromise between the efficiency of 

annotation and the accuracy of segmentation.  The purpose of this study is to provide a comprehensive comparison analysis of 

patch-wise and pixel-wise labelling strategies for semantic segmentation across various datasets and architectures.  We 

investigate the trade-offs that exist between characteristics such as label granularity, computational expense, model 

performance, and the ability to generalise.  The most cutting-edge segmentation networks, including U-Net, DeepLabV3+, and 

Swin Transformer, are utilised in experiments carried out on benchmark datasets such as Cityscapes and PASCAL VOC.  Our 

findings reveal the conditions under which patch-wise labelling can serve as a powerful substitute for pixel-wise approaches in 

situations where supervision is weak or resources are limited.  Regarding annotation, model architecture, and the 

implementation of segmentation systems in the real world, the paper considers the ramifications. 
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1. Introduction 

 

Semantic segmentation, a core task in computer vision, assigns a categorical label to each pixel in an image. It has a wide range 

of applications, including autonomous driving, medical imaging, satellite imagery, and robotics. While deep learning has 

dramatically improved segmentation performance, the underlying annotation process remains one of the most tedious and time-

consuming steps in dataset creation. High-quality pixel-wise annotations require extensive manual labour, large-scale 

supervised model training, and bottlenecks. Semantic segmentation research has traditionally focused on improving model 

architectures, loss functions, and optimisation techniques, with less emphasis on the nature and quantity of annotations. Pixel-

perfect labelling, although precise, requires meticulous hand-drawing of object boundaries, which is infeasible for large 

datasets. For instance, annotating a single high-resolution Cityscapes image can take more than 90 minutes for an expert 
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labeller. Such annotation-intensive pipelines slow down the dataset growth rate, prohibit experimentation across domains, and 

limit the ability to easily transfer models to new environments. This underscores a critical need for methods that compromise 

on annotation efficiency in exchange for tolerable accuracy. Patch-wise labelling addresses this bottleneck by simplifying the 

annotation task to block-level choices, allowing annotators to label regions of pixels rather than individual pixels. By grouping 

pixels into fixed-size patches, the method reduces the number of decisions required by orders of magnitude.  

 

At this coarse level, the expense of fine boundary definition and the potential introduction of mixed-class regions in patches 

encompassing multiple objects make the speed-versus-spatial-accuracy trade-off vital in determining its utility. Being aware of 

this trade-off is important in areas such as medical imaging and aerial mapping, where costly annotation typically prevents the 

creation of large datasets. Patch-wise labelling has yet to be rigorously compared with pixel-wise labelling under uniform 

experimental conditions across a wide range of architectures and datasets. Prior work has either treated weakly supervised 

approaches or presented qualitative claims, but without sufficient quantitative rigour. Our research fills this gap by conducting 

a controlled, side-by-side evaluation using identical model configurations, data splits, and training procedures. We aim to 

provide practical advice on when and under what conditions patch-wise labelling is an economically feasible alternative, and 

where it does not suffice for high-spatial-fidelity tasks. To address this challenge, researchers explored alternative labelling 

strategies, such as patch-wise labelling, which assigns labels to image patches rather than individual pixels. Patch-wise labelling 

not only reduces annotation cost but also enables efficient training in low-resource or weakly supervised settings. However, it 

has inherent trade-offs, particularly in spatial accuracy and boundary precision. In this paper, we present a detailed comparative 

study of patch-wise and pixel-wise labelling methods for semantic segmentation. Specifically, we aim to give answers to the 

following questions: 

 

 How do patch-wise and pixel-wise labels affect segmentation accuracy on different deep learning models? 

 What are the differences in annotation and computational cost between patch-wise and pixel-wise labels? 

 When can patch-wise labelling become a competitive option to pixel-wise labelling? 

 

We test our approach on two benchmark datasets, PASCAL VOC 2012 and Cityscapes, using widely used architectures such 

as U-Net, DeepLabV3+, and Swin Transformer. The models are trained and evaluated on datasets annotated with both labelling 

strategies under controlled conditions. Our experiments show that while pixel-wise labelling consistently results in higher 

accuracy, patch-wise labelling achieves competitive performance with significantly reduced annotation effort, particularly for 

coarse segmentation tasks. The contributions of the paper are as follows: 

 

 Systematic comparison of patch-wise and pixel-wise labelling in terms of segmentation accuracy, annotation cost, and 

training time. 

 A novel labelling pipeline to generate patch-wise labels from pixel-wise ground truths. 

 Empirical understanding of the conditions under which patch-wise labelling is most beneficial. 

 

2. Related Work 

 

Semantic segmentation — the task of labelling every pixel in an image with a small, predefined set of categories — is central 

to scene understanding. Early solutions relied on manually designed features and traditional machine learning techniques, such 

as Conditional Random Fields (CRFs) and Support Vector Machines (SVMs), which were unsuitable for complex scenes and 

varying illumination conditions. Deep learning, particularly Convolutional Neural Networks (CNNs), revolutionised semantic 

segmentation by enabling end-to-end learning from raw image pixels. Long et al. [1] introduced Fully Convolutional Networks 

(FCNs), in which fully connected layers were replaced with convolutional layers to retain spatial information and enable dense, 

pixel-wise predictions. This work paved the way for more robust and accurate models. Inspired by this, Ronneberger et al. [2] 

introduced the U-Net, an encoder-decoder model enriched with skip connections that retain spatial information and preserve 

fine details. U-Net was particularly helpful for biomedical image segmentation tasks, where accurate boundary delineation is 

crucial. 

 

Subsequent models introduced improvements centred on multi-scale boundary refinement and context aggregation. 

DeepLabV3+ applied atrous (dilated) convolutions to expand the receptive field with minimal loss of resolution, and 

incorporated a module to confine precise boundaries [3]. Similarly, Zhao et al. [4] developed PSPNet to apply pyramid pooling 

for multi-scale global context aggregation, thereby enhancing scene-level understanding. Later, transformer-based models 

emerged that utilise self-attention to capture long-range dependencies, which CNNs struggle to achieve. Swin Transformer 

introduced a hierarchical vision transformer with window shifting, achieving state-of-the-art results on semantic segmentation 

tasks [5]. Similarly, SegFormer combines light transformers with multi-scale knowledge to offer an efficient and scalable 

approach [6]. Despite these advances, semantic segmentation remains a challenging problem due to factors such as varying 

object scales, occlusions, and class imbalances. In addition, the training of such models typically relies on large amounts of 

extensively annotated pixel-level data, which promotes the exploration of alternative labelling schemes. 
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2.1. Pixel-Wise vs. Patch-Wise Labeling 

 

Pixel-wise labelling, where each pixel is assigned a semantic class, is widely regarded as the norm for semantic segmentation 

datasets. Fine-grained annotation enables models to learn fine-grained spatial information, resulting in highly accurate, detailed 

segmentation outputs. Pixel-level labelling, however, is costly and time-consuming and often involves laborious boundary 

delineation by trained annotators. This is particularly pronounced in large datasets or fields such as medical imaging and remote 

sensing, where images may be of extremely high resolution or contain intricate structures. Patch-wise labelling then proposes 

a separate solution by assigning a single label to a fixed-size patch or region of an image. Coarse labelling dramatically reduces 

annotation work because annotators need only identify the majority class per patch, rather than precisely outlining each object. 

Patch-wise labelling originated in weakly supervised learning, in which coarse or low-quality annotations are used to train 

models [7].  

 

In medical imaging, for instance, Rajpurkar et al. [8] used patch-based labels to detect pathological regions without needing 

pixel-perfect annotations. Cheng et al. [9] also showed patch-based classification in satellite images, where annotating every 

pixel is not feasible. In addition to the effectiveness of annotation, patch-wise labelling also serves as a form of regularisation, 

forcing models to learn robust features at a regional scale. Patch-wise labelling has been extended to few-shot learning, in 

which only a few labelled patches are used to generalise to new classes. Self-supervised learning mechanisms also leverage 

patch-level representations to learn contextual embeddings when no explicit labels are available [10]. Nonetheless, patch-wise 

labelling is challenging. High-resolution spatial detail loss can degrade segmentation precision at object boundaries and in 

scenes with overlapping classes. It is an open research area to understand trade-offs between patch-wise and pixel-wise 

labelling, especially between model architectures [11]. 

 

2.2. Annotation Efficiency and Label Quality 

 

The cost-effectiveness of annotation protocols has critical implications for the feasibility of deploying semantic segmentation 

models in real-world applications. High-quality pixel-wise labels provide rich supervisory signals but are extremely expensive. 

Consequently, researchers have sought methods to reduce labelling effort without compromising model performance. One of 

the major problems with patch-wise or coarse annotations is the presence of label noise and ambiguity. Patches with multiple 

classes have incorrect dominant labels, which creates noisy training signals. Reed et al. [12] addressed this issue by using noise-

robust loss functions that adaptively weight samples based on label confidence, thereby penalising the effects of low-quality 

annotations. Similarly, Bearman et al. [13] proposed interactive labelling strategies in which annotators provide sparse 

annotations—points or scribbles—and then propagate them to form complete segmentation masks, balancing label accuracy 

with annotation speed.  

 

Research by Tin [14] includes techniques such as linear, median, and adaptive filtering, which play a crucial role in noise 

removal and enhancement. Median filtering offers superior performance in eliminating outliers while preserving image 

sharpness. By effectively filtering out irrelevant information and suppressing noise, these methods enhance the quality of input 

images, thereby improving the accuracy and reliability of subsequent analysis tasks. Tin [15], an Eigenface-based age 

estimation algorithm, classifies individuals into age categories before identification, offering speed, simplicity, learning 

capability, and robustness for applications in human-computer interaction and multimedia communication. Building on early 

investigations into coarse annotations, 

 

Papandreou et al. [16] explored the use of bounding-box and image-level labels to train segmentation networks via Expectation-

Maximisation, demonstrating that strong pixel-level performance could be achieved with weak supervision. This work laid the 

groundwork for considering patch-wise and other coarse annotation schemes as practical alternatives when full supervision is 

infeasible. Following this, Khoreva et al. [17] extended the idea by generating pixel-level segmentation masks from bounding 

boxes using iterative refinement and object proposal techniques, thereby reducing the manual annotation burden while 

maintaining competitive accuracy. In the domain of medical imaging, Milletari et al. [18] proposed the V-Net architecture, 

designed for volumetric segmentation, which utilises a Dice loss function to handle imbalanced label distributions. Although 

their focus was on 3D segmentation, their work highlighted the annotation challenge in high-dimensional data and, by 

extension, supported the argument for patch-based or region-based labels to reduce cost. Likewise, Tajbakhsh et al. [19] 

investigated self-training with noisy and incomplete labels for medical image segmentation, showing that robust models could 

still be trained with imperfect annotations, which is relevant to understanding the trade-offs inherent in patch-wise labelling. In 

remote sensing, Marmanis et al. [20] investigated the effect of annotation granularity on the semantic segmentation of aerial 

images, comparing superpixel-level and pixel-level annotations.  

 

Their study revealed that while superpixel-level labels led to reduced accuracy in fine boundary regions, they yielded a 

significant reduction in annotation cost, a pattern consistent with patch-wise approaches. Similarly, Kampffmeyer et al. [21] 

explored conditional generative adversarial networks (cGANs) for label refinement, transforming coarse annotations into 
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sharper boundaries, thus bridging the gap between patch-level supervision and pixel-level precision. These studies collectively 

demonstrate that the research community has recognised the annotation bottleneck as a major barrier to scaling semantic 

segmentation models. While most works emphasise weak or semi-supervised methods to overcome label scarcity, relatively 

few have conducted direct, controlled comparisons between pixel-wise and patch-wise annotation within identical experimental 

frameworks. This gap motivates our systematic evaluation to quantify performance, cost, and computational trade-offs across 

both labelling strategies and multiple model architectures. Weakly supervised and semi-supervised learning methods further 

exploit partially labelled or noisy information. Label propagation, consistency regularisation, and pseudo-labelling methods 

enable models to learn from sparse labels and improve generalisation. Active learning paradigms also emphasise annotating 

the most informative examples to reduce redundancy. In transformer-based models, both attention mechanisms and global 

receptive fields can offer robustness to noisy or coarse labels by leveraging contextual signals. However, empirical comparisons 

of the impact of labelling fineness on transformer performance relative to CNNs are scarce. Our work builds on these 

foundations by experimentally measuring the influence of pixel-wise and patch-wise annotations on model accuracy, 

computational efficiency, and annotation cost. By comparing different architectures and labelling granularities in a controlled 

manner, we aim to establish practical guidelines for practitioners who must balance annotation costs and model performance. 

 

3. Methodology 

 

To ensure fair comparison between pixel-wise and patch-wise labelling strategies, we maintain identical training and validation 

splits for all experiments. For patch-wise models, after generating the coarse patch annotations, we upsample them to the 

original image resolution before feeding them into the network. This approach ensures that the model input and output 

dimensions remain consistent across both labelling strategies, avoiding architecture-dependent biases. Furthermore, we verify 

that patch label generation preserves class balance and does not disproportionately eliminate minority classes during majority 

voting, which could otherwise skew performance metrics. For annotation time estimation, we follow prior literature by 

simulating labelling effort based on average human annotation speed per unit area. Pixel-wise labelling time is estimated using 

published benchmarks for fine segmentation (e.g., Cityscapes annotation guidelines). In contrast, patch-wise annotation time 

is derived by scaling the number of labelling decisions to the patch grid size. This allows us to quantify the annotation cost 

reduction in a reproducible manner without relying on live annotator experiments. In addition, we record the computational 

training time for each model–dataset–labelling combination on identical hardware (NVIDIA RTX 3090 GPU with 24 GB 

VRAM) to assess potential differences in training speed. For robustness analysis, we conduct two ablation experiments. First, 

we vary patch sizes (16×16, 32×32, and 64×64) to examine how granularity impacts segmentation accuracy and cost savings. 

Second, we test both "dominant-class" and "boundary-exclusion" strategies for mixed patches to determine whether discarding 

ambiguous regions improves performance. These ablations are evaluated using the same training protocols and metrics as the 

main experiments, enabling us to capture trade-offs among label precision, training stability, and efficiency across different 

settings. 

 

3.1. Datasets 

 

We use two benchmark datasets: 

 

 PASCAL VOC 2012: Contains 20 object classes and background. We use the augmented set with 10,582 images for 

training and 1,449 for validation. 

 Cityscapes: Features 5,000 high-resolution street scene images from 50 cities. We use the fine-annotated set, which 

consists of 2,975 training images and 500 validation images. 

 

3.2. Labelling Strategies 

 

We use the official ground-truth masks provided in the datasets for pixel-wise labelling. Each pixel has a class label indicating 

its object class. We divide each image into 16×16 and 32×32-pixel non-overlapping patches. A patch is assigned a label based 

on the most frequent class among its pixels (majority voting). Boundary patches with mixed classes are assigned to the dominant 

class or are excluded in an ablation version. OpenCV and NumPy are used to generate patch-level annotations from ground-

truth masks. 

 

3.3. Model Architectures 

 

We benchmark three well-known segmentation models: U-Net, DeepLabV3+, and Swin Transformer. All models are PyTorch 

implementations and are trained with standard cross-entropy loss. 

 

3.4. Training Setup and Evaluation Metrics 
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We use the following metrics to evaluate models. They include Mean Intersection over Union (mIoU), Pixel Accuracy, Training 

Time, and Annotation Time Estimate. All models are trained for 100 epochs with the Adam optimiser and a batch size of 8. 

Data augmentation is done by horizontal flipping and random cropping. Patch-wise models are trained bilinearly on upsampled 

patch annotations to the output resolution. 

 

4. Experiments and Results 

 

A closer look at the dataset-specific results reveals that the performance drop from pixel-wise to patch-wise labelling is slightly 

more pronounced on Cityscapes than on PASCAL VOC. This is expected because Cityscapes images are high-resolution and 

contain fine-grained object boundaries, such as poles, pedestrians, and traffic signs, which are difficult to represent accurately 

in coarse patch grids. For example, thin structures may be entirely missed if the majority of pixels in a patch belong to a different 

class. Conversely, PASCAL VOC has more object-centric images with relatively larger homogeneous regions, making it less 

sensitive to coarse labelling. This difference underscores that the suitability of patch-wise labelling is not universal and depends 

heavily on the structural complexity of the target domain. When comparing model architectures, we observe that the Swin 

Transformer exhibits the smallest relative drop in mIoU when moving from pixel-wise to patch-wise annotations (about 5.4% 

on VOC and 5.1% on Cityscapes), followed by DeepLabV3+ and U-Net. This resilience can be attributed to the transformer’s 

self-attention mechanism, which captures long-range dependencies and contextual relationships more effectively than purely 

convolutional architectures. In practice, this means that certain model families can better tolerate coarser supervision without 

suffering disproportionate accuracy loss. For practitioners, this suggests that the architecture choice should align with the 

annotation strategy, particularly when resources are constrained. The training time differences, while modest in absolute terms, 

are consistent across all model–dataset combinations.  

 

Patch-wise annotation reduces the complexity of the target maps, which appears to ease optimisation and slightly shorten 

convergence time. However, this acceleration does not scale linearly with label coarseness; beyond a certain point, the benefit 

to training speed may be offset by a greater need for epochs to compensate for reduced supervision quality. This observation is 

particularly relevant for practitioners who might expect dramatic training speedups from coarser labels; our results indicate that 

such expectations should be tempered. In terms of annotation efficiency, the gains are substantial and unambiguous. The 

estimated reduction in annotation time from ~100 hours to ~15 hours is transformative, especially in domains that require 

specialised expertise. For instance, in medical imaging, annotating MRI scans pixel-by-pixel demands not only time but also 

the involvement of radiologists, whose availability and cost can be prohibitive. In such cases, the ability to annotate in a fraction 

of the time could accelerate dataset creation, allow for more frequent updates to the training corpus, and enable rapid domain 

adaptation to new equipment or imaging protocols. A similar argument applies to satellite imagery, where annotating large 

areas at full resolution is logistically challenging. An interesting secondary observation is that patch-wise annotation appears 

to disproportionately affect classes with small objects or thin structures. Qualitative analysis of segmentation outputs shows 

that models trained on patch-level labels tend to produce smoother boundaries and often merge adjacent small objects into 

larger segments.  

 

While this may be acceptable in some coarse-grained tasks—such as land-use mapping, where large homogeneous regions are 

the focus—it is detrimental in safety-critical applications like autonomous driving, where accurate detection of pedestrians, 

traffic lights, and lane markings is essential. This highlights that the acceptability of patch-wise labelling depends not only on 

domain-level annotation costs but also on the semantic importance of fine-scale structures. The results also open interesting 

possibilities for hybrid labelling strategies. For example, a dataset could be annotated with pixel-wise labels for a subset of 

classes that require high precision (e.g., pedestrians, traffic signs), and patch-wise labels for classes with large, homogeneous 

regions (e.g., roads, skies). Alternatively, active learning could be used to selectively refine coarse labels in regions where the 

model exhibits low confidence. Such approaches could yield most of the annotation time savings of patch-wise labelling while 

mitigating the largest accuracy losses. Finally, while the present experiments were conducted with a fixed patch size (16×16 

for the main results), our ablation study suggests that the optimal patch size may vary across datasets and model architectures. 

Smaller patches naturally preserve more spatial detail but require more annotation effort, whereas larger patches amplify the 

speed–accuracy trade-off. This parameter thus provides a tunable axis for practitioners to balance the annotation budget and 

the desired segmentation quality.  

 

Table 1: Comparison of pixel-wise and patch-wise labelling methods 

 

Model Label Type mIoU 

(VOC) 

mIoU (Cityscapes) Training Time Est. Annotation 

Time 

U-Net Pixel-Wise 68.2% 71.4% 4.1 hrs ~100 hrs 

U-Net Patch-Wise (16×16) 62.8% 66.9% 3.6 hrs ~15 hrs 

DeepLabV3+ Pixel-Wise 74.5% 78.2% 6.2 hrs ~100 hrs 

DeepLabV3+ Patch-Wise 68.7% 72.5% 5.0 hrs ~15 hrs 
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Swin Transformer Pixel-Wise 80.2% 82.1% 8.0 hrs ~100 hrs 

Swin Transformer Patch-Wise 74.8% 77.0% 6.8 hrs ~15 hrs 

 

In summary, the experiments confirm that pixel-wise labelling remains the gold standard for achieving maximum segmentation 

accuracy, particularly in domains requiring fine spatial fidelity. However, patch-wise labelling emerges as a highly viable 

alternative in resource-limited scenarios, especially when paired with architectures such as the Swin Transformer that are 

inherently robust to coarser supervision. The substantial reduction in annotation time—over 85%—makes it a compelling 

option for rapid dataset creation and prototyping, provided that the performance trade-offs are acceptable for the intended 

application. Table 1 presents quantitative results comparing pixel-wise and patch-wise labelling methods across three semantic 

segmentation models—U-Net, DeepLabV3+, and Swin Transformer—evaluated on two benchmark datasets: Pascal VOC and 

Cityscapes. The metrics considered include mean Intersection over Union (mIoU), training time, and estimated annotation time. 

Pixel-wise labelling outperforms patch-wise labelling across all models and datasets. The performance gap is 5–6%, indicating 

that higher-grained annotations yield more precise segmentation predictions. The Swin Transformer outperforms others in both 

settings, achieving 80.2% mIoU on Pascal VOC and 82.1% on Cityscapes with pixel-wise labels, confirming the superiority of 

transformer-based models for dense prediction tasks (Figure 1). 

 

 
 

Figure 1: Model comparison 

 

One of the principal reasons for considering patch-wise labelling is the cost of annotation. Pixel-wise annotation is very time-

consuming (~100 hours estimated), while patch-wise annotation reduces this to ~15 hours, a reduction of over 85%. This is 

particularly relevant for application domains such as medical imaging and satellite imagery, where expert time is costly and 

full-resolution annotation is not feasible. Training durations were also shorter by 0.5 to 1.2 hours for patch-wise labelled 

datasets, compared to their pixel-wise counterparts. This reduction occurs due to lower input complexity and less fine-grained 

supervision, which accelerates convergence but may simultaneously limit final accuracy. These results suggest a crucial trade-

off: while patch-wise annotation significantly reduces annotation time and training costs, it comes at the expense of some 

accuracy. However, the Swin Transformer still performed well even with patch-level labels, suggesting that clever architecture 

can be more label-resilient. This is promising for real-world applications in low-annotation-budget scenarios where small 

performance trade-offs are acceptable. 

 

5. Findings and Discussion 

 

The trade-offs observed in our experiments emphasise that the annotation strategy should be guided by the requirements of the 

target application rather than a blanket preference for maximum accuracy. In scenarios where object boundaries are less critical 

to the downstream task, such as land cover classification from satellite imagery or tumour localisation in medical scans, the 

small accuracy penalty of patch-wise labelling may be outweighed by its substantial annotation savings. Conversely, in 

applications such as autonomous driving or surgical navigation, where precise boundary delineation significantly impacts 

safety, pixel-wise annotation remains the preferred approach. Another noteworthy insight is that the resilience of transformer-

based models to coarser labels suggests a promising direction for future research: designing architectures explicitly optimised 

for learning from low-resolution or noisy annotations. Incorporating multi-scale feature aggregation, attention mechanisms, or 

uncertainty modelling could further close the gap between patch-wise and pixel-wise performance. Moreover, these 

architectures could be paired with active learning pipelines that identify and request finer annotations only for ambiguous or 

high-impact regions, thereby maximising efficiency. It is also important to acknowledge that our patch-wise annotations were 

synthetically generated from pixel-wise masks via majority voting. In real-world scenarios, manual patch-level annotation may 

introduce additional variability due to human perception of ambiguous regions. This discrepancy could potentially widen the 

performance gap and warrants further empirical investigation with human-annotated patch datasets. Additionally, the dominant-

102



 

Vol.3, No.2, 2025  

class labelling scheme inherently favours large, homogeneous regions, potentially biasing models to overpredict the background 

or majority class. Exploring alternative labelling schemes—such as soft labels representing class proportions within a patch 

could help mitigate this bias and improve generalisation. Ultimately, our findings suggest that patch-wise labelling is not a one-

size-fits-all replacement but a strategic tool in the annotation toolkit, best deployed when resource constraints, task 

requirements, and model robustness align. These findings indicate that although pixel-wise labelling is optimal in performance, 

patch-wise labelling can serve as a suitable replacement in most cases: 

 

 Efficiency of Annotation: Patch-wise labelling reduces manual effort by approximately 85%. It is therefore best for 

large or high-turnaround papers. 

 Boundary Accuracy: Patch-wise models struggle with thin structures (e.g., edges, poles). Hybrid approaches, such as 

using pixel-wise labels near object edges and patch-wise labels elsewhere, could represent an intermediate 

compromise. 

 Model Robustness: Transformer-based models, such as Swin Transformer, are better suited for patch-level 

supervision than CNNs, possibly due to their global receptive fields. 

 Use Cases: Patch-wise labelling is particularly effective in remote sensing, medical imaging, or robot navigation, 

where coarse-level segmentation is sufficient. 

 

6. Conclusion and Future Work 

 

The paper conducts an extensive analysis of patch-wise versus pixel-wise labelling techniques for semantic segmentation with 

CNN and transformer models. Although pixel-wise annotation is still the gold standard for fine-grained tasks, patch-wise 

labelling performs fairly well at a tiny fraction of the cost of annotation. Experiments in our work demonstrate that the Swin 

Transformer maintains strong performance even under coarse supervision, suggesting the viability of leveraging patch-wise 

annotations in transformer-based pipelines. Accuracy v/s annotation efficiency trade-offs must be resolved judiciously based 

on application requirements. There are various directions to explore for future work. Combining patch-wise and pixel-wise 

annotations for different regions of an image. Employing label uncertainty or confidence maps within training loss functions. 

Developing smart tools to help annotators dynamically switch between patch- and pixel-level annotations. Scaling patch-based 

labelling to 3D point clouds and volume data for medical imaging or autonomous driving applications. This work establishes a 

clear empirical understanding of when and how patch-wise labelling can be a competitive alternative to pixel-wise annotation 

in semantic segmentation. By systematically comparing multiple architectures and datasets under controlled settings, we show 

that the efficiency gains from patch-wise labelling, both in annotation time and training time, are substantial, making it a 

compelling choice in scenarios constrained by budget, expertise, or paper timelines. At the same time, we emphasise that this 

approach comes with inherent limitations, particularly in preserving fine object boundaries and accurately detecting small or 

thin structures.  

 

From a practical standpoint, our results suggest that patch-wise labelling can be especially effective in domains where coarse-

level predictions are sufficient or where the cost of high-resolution annotation is prohibitive. The finding that transformer-based 

models, such as Swin Transformer, are more resilient to coarse supervision opens the door to designing architectures that 

inherently tolerate lower annotation granularity. Future research could focus on optimising attention mechanisms, multi-scale 

feature integration, and uncertainty estimation specifically for coarse-label training scenarios. Looking ahead, there are multiple 

promising directions for extending this work. Hybrid annotation pipelines can dynamically allocate pixel-wise annotations to 

critical image regions—such as boundaries or rare classes—while using patch-wise labels elsewhere. Semi-supervised and 

active learning frameworks could be adapted to progressively refine coarse labels where the model detects ambiguity or 

performance bottlenecks. Another approach is to develop annotation tools that enable seamless switching between patch and 

pixel modes, providing annotators with greater flexibility during dataset creation. Beyond 2D imagery, adapting and validating 

patch-wise labelling for 3D data—such as point clouds in autonomous driving or volumetric scans in medical imaging—could 

further expand its applicability. By integrating these innovations, future systems could better balance accuracy, efficiency, and 

scalability in semantic segmentation tasks. 
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